1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
| import torch import torch.nn as nn from collections import OrderedDict import torch import numpy as np import clip
class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask
def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x
class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor): return self.resblocks(x)
class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type)
class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x)
class TextEncoder(nn.Module): def __init__(self, embed_dim: int, context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__()
self.context_length = context_length
self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() )
self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.temperature = nn.Parameter(torch.tensor(0.07))
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
print(f"text_projection shape: {self.text_projection.shape}") self.dtype = torch.float32
self.initialize_parameters()
def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) else: nn.init.normal_(self.text_projection, std=self.custom_text_config['text_rep_size'] ** -0.5)
def build_attention_mask(self): mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) return mask
def forward(self, text): x = self.token_embedding(text).type(self.dtype)
x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) x = self.transformer(x) x = x.permute(1, 0, 2) x = self.ln_final(x).type(self.dtype) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
if __name__ == '__main__': import clip
device = "cpu" model, preprocess = clip.load("ViT-B/32", device=device) model.eval()
text_encoder = TextEncoder(embed_dim=512, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12)
missing_keys, unexpected_keys = text_encoder.load_state_dict(model.state_dict(), strict=False)
text_encoder.eval()
input_tensor = clip.tokenize("a diagram").to(device) traced_model = torch.jit.trace(text_encoder, input_tensor)
onnx_filename = 'clip-text-encoder.onnx'
torch.onnx.export(text_encoder, input_tensor, onnx_filename)
|